1,144 research outputs found

    Systems, Resilience, and Organization: Analogies and Points of Contact with Hierarchy Theory

    Full text link
    Aim of this paper is to provide preliminary elements for discussion about the implications of the Hierarchy Theory of Evolution on the design and evolution of artificial systems and socio-technical organizations. In order to achieve this goal, a number of analogies are drawn between the System of Leibniz; the socio-technical architecture known as Fractal Social Organization; resilience and related disciplines; and Hierarchy Theory. In so doing we hope to provide elements for reflection and, hopefully, enrich the discussion on the above topics with considerations pertaining to related fields and disciplines, including computer science, management science, cybernetics, social systems, and general systems theory.Comment: To appear in the Proceedings of ANTIFRAGILE'17, 4th International Workshop on Computational Antifragility and Antifragile Engineerin

    On environments as systemic exoskeletons: Crosscutting optimizers and antifragility enablers

    Full text link
    Classic approaches to General Systems Theory often adopt an individual perspective and a limited number of systemic classes. As a result, those classes include a wide number and variety of systems that result equivalent to each other. This paper introduces a different approach: First, systems belonging to a same class are further differentiated according to five major general characteristics. This introduces a "horizontal dimension" to system classification. A second component of our approach considers systems as nested compositional hierarchies of other sub-systems. The resulting "vertical dimension" further specializes the systemic classes and makes it easier to assess similarities and differences regarding properties such as resilience, performance, and quality-of-experience. Our approach is exemplified by considering a telemonitoring system designed in the framework of Flemish project "Little Sister". We show how our approach makes it possible to design intelligent environments able to closely follow a system's horizontal and vertical organization and to artificially augment its features by serving as crosscutting optimizers and as enablers of antifragile behaviors.Comment: Accepted for publication in the Journal of Reliable Intelligent Environments. Extends conference papers [10,12,15]. The final publication is available at Springer via http://dx.doi.org/10.1007/s40860-015-0006-

    Antifragility = Elasticity + Resilience + Machine Learning: Models and Algorithms for Open System Fidelity

    Full text link
    We introduce a model of the fidelity of open systems - fidelity being interpreted here as the compliance between corresponding figures of interest in two separate but communicating domains. A special case of fidelity is given by real-timeliness and synchrony, in which the figure of interest is the physical and the system's notion of time. Our model covers two orthogonal aspects of fidelity, the first one focusing on a system's steady state and the second one capturing that system's dynamic and behavioural characteristics. We discuss how the two aspects correspond respectively to elasticity and resilience and we highlight each aspect's qualities and limitations. Finally we sketch the elements of a new model coupling both of the first model's aspects and complementing them with machine learning. Finally, a conjecture is put forward that the new model may represent a first step towards compositional criteria for antifragile systems.Comment: Preliminary version submitted to the 1st International Workshop "From Dependable to Resilient, from Resilient to Antifragile Ambients and Systems" (ANTIFRAGILE 2014), https://sites.google.com/site/resilience2antifragile
    • …
    corecore